Fractional Dynamical Systems on Fractional Leibniz Algebroids
نویسنده
چکیده
The theory of derivative of noninteger order goes back to Leibniz, Liouville, Riemann, Grunwald and Letnikov. Derivatives of fractional order have found many applications in recent studies in mechanics, physics, economics, medicine.Classes of fractional differentiable systems have studied in [10], [4]. In the first section the fractional tangent bundle to a differentiable manifold is defined, using the method of Radu Miron’s from [8]. In this paper the fractional dynamical systems on fractional Leibniz algebroids are presented. The associated geometrical objects have an geometric character. Also, some examples for fractional dynamical systems of this type are given.
منابع مشابه
Fractional dynamical systems: A fresh view on the local qualitative theorems
The aim of this work is to describe the qualitative behavior of the solution set of a given system of fractional differential equations and limiting behavior of the dynamical system or flow defined by the system of fractional differential equations. In order to achieve this goal, it is first necessary to develop the local theory for fractional nonlinear systems. This is done by the extension of...
متن کاملThe Maxwell-Bloch equations on fractional Leibniz algebroids
Numerous Mircea Puta’s papers were dedicated to the study of Maxwell Bloch equations. The main purpose of this paper is to present several types of fractional Maxwell Bloch equations. M.S.C. 2000: 53D17, 58F06.
متن کاملm at h . D G ] 1 3 A ug 2 00 5 1 DYNAMICAL SYSTEMS ON LEIBNIZ ALGEBROIDS
In this paper we study the differential systems on Leibniz algebroids. We introduce a class of almost metriplectic manifolds as a special case of Leibniz manifolds. Also, the notion of almost metriplectic algebroid is introduced. These types of algebroids are used in the presentation of associated differential systems. We give some interesting examples of differential systems on algebroids and ...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کامل